Cancelable fingerprint templates using minutiae-based bit-strings
نویسندگان
چکیده
It has become critical to protect biometric templates in the current biometric community. One way for doing this is using a cancelable biometric method, which transforms original biometric templates in a non-invertible way and uses those transformed templates to verify a person’s identity. In this paper, we propose a new method to generate cancelable bit-strings (templates) from fingerprint minutiae. Our method is to provide a simple mean to generate cancelable templates without requiring for prealignment of fingerprints. The main idea is to map the minutiae into a predefined 3 dimensional array which consist of small cells and find out which cells include minutiae. To do this, we choose one of minutiae as a reference minutia and other minutiae are translated and rotated in order to map the minutiae into the cells based on the position and orientation of the reference minutia. After mapping, we set the cells in the 3D array to 1 if they include more than one minutia otherwise the cells are set to 0. A 1D bit-string is generated by sequentially visiting the cells in the 3D array. The order of the 1D bitstring is permuted according to the type of reference minutiae and user’s PIN so that we can regenerate new templates when we need them. Finally, cancelable bit-strings are generated by changing the reference minutia into another minutia in turn. In the experiments, we evaluate our method using the FVC2004 database and show that the performance is better than that of a previous method. & 2009 Elsevier Ltd. All rights reserved.
منابع مشابه
Secure Minutiae-Based Fingerprint Templates Using Random Triangle Hashing
Due to privacy concern on the widespread use of biometric authentication systems, biometric template protection has gained great attention in the biometric research recently. It is a challenging task to design a biometric template protection scheme which is anonymous, revocable and noninvertible while maintaining acceptable performance. Many methods have been proposed to resolve this problem, a...
متن کاملDevelopment of Bio-crypto Key from Fingerprints Using Cancelable Templates
Identity theft can be effectively solved by the integration of biometrics and cryptography. Lately, researchers and experimenters have been greatly attracted by the improved performance (protection) of cryptographic keys produced from biometrics. However, there exists an eternal association between the biometric and the user, where in, alteration is not viable. Hence, a compromise of the biomet...
متن کاملAn Effective Scheme for Generating Irrevocable Cryptographic Key from Cancelable Fingerprint Templates
Unswerving information security mechanisms are the need of the hour for fighting the escalating enormity of identity theft in our society. Besides cryptography being a dominant tool in attaining information security, one of the key confronts in cryptosystems is to preserve the secrecy of the cryptographic keys. The incorporation of biometrics with cryptography will be an effective solution to t...
متن کاملAn integrated framework combining Bio-Hashed minutiae template and PKCS15 compliant card for a better secure management of fingerprint cancelable templates
متن کامل
Using k-nearest neighbors to construct cancelable minutiae templates
Fingerprint is widely used in a variety of applications. Security measures have to be taken to protect the privacy of fingerprint data. Cancelable biometrics is proposed as an effective mechanism of using and protecting biometrics. In this paper we propose a new method of constructing cancelable fingerprint template by combining real template with synthetic template. Specifically, each user is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Network and Computer Applications
دوره 33 شماره
صفحات -
تاریخ انتشار 2010